





# Partial Test Oracle in Model Transformation Testing

## ICMT'13 – Budapest

Olivier Finot, <u>Jean-Marie Mottu</u>, Gerson Sunyé, Christian Attiogbe



### Outline

- Case Study : FSM2FFSM
- Introduction: Model Transformation Testing
- Problem: Tediousness of Creating and Analysing Models
- The Story So Far!
- Problem: Difficult To Predict Expected Models
- Filtered Model Comparison
- Tool & Experimentation
- Perspectives
- Conclusion

## Case Study: FSM2FFSM

Flattening of Hierarchical State Machines



## **Model Transformation Testing**

- Ensure Model Transformation Quality
- Prevent Fault Propagation
- Test Models are generated
- Test Oracles control that output models satisfy the specifications





Data

Function

Problem: Tediousness of Creating and Analysing Models



Problem: Tediousness of Creating and Analysing Models



Problem: Tediousness of Creating and Analysing Models













### The story so far!

## **Test Model Generation**

- 2008: How to generate models that satisfy knowledge from heterogeneous sources?
- Published in: Sen, Baudry, Mottu. On Combining Multi-formalism Knowledge to Select Test Models, ICST'08



## The story so far! Test Model Generation

- 2009: How to test models satisfying coverage criteria and how to validate the quality of these test models?
- Published in: Sen, Baudry, Mottu, Automatic Model Generation Strategies for Model Transformation Testing. ICMT'09
- 40 Test Models Covering Input Domain vs. 200 Unguided Models



## The story so far!

## **Test Model Generation**

- 2012: How use "partial knowledge" by introducing a humanin-the-loop for test model generation?
- Published in: Sen, Mottu et al. Using Models of Partial Knowledge to Test Model Transformations, ICMT'12
- Partial models when completed give 100% mutation score just like human-made complete models with the same knowledge.



## The story so far! Test Oracle

- 2008: Designed Oracle Function to test Model Transformations
- Published in: Mottu et al. Model Transformation Testing: oracle issue. MoDeVVa'08 workshop at ICST'08
- An Oracle Function processes output models. It is parameterized with an Oracle Data and returns a verdict.
  - For instance an oracle function can use
    - a model comparison to compare output and expected models
    - or contracts

# Problem: Expected Models are Difficult to Predict

- Can the tester write and use partial expected models in oracle?
- Tester predicts part of the expected model only
- Tester may not predict remaining part when:
  - the model is large or complex
  - test case does not consider part of the specification
  - the output model is polymorphic
  - the transformation refactors a model

## Expected Models are Difficult to Predict

- Can the tester write and use partial expected models in oracle?
- Tester predicts part of the expected model only
- Test may not predict remaining part when:
  - the model is large or complex
  - test case does not consider part of the specification
  - the output model is polymorphic
  - the transformation refactors a model



#### 20

### Problem:

## Expected Models are Difficult to Predict

Can the tester write and use partial expected models in oracle?



## Expected Models are Difficult to Predict

- Can the tester write and use partial expected models in oracle?
- Tester predicts part of the expected model only
- Test may not predict remaining part when:
  - the model is large or complex
  - test case does not consider part of the specification
  - the output model is polymorphic
  - the transformation refactors a model

#### fsm2ffsm:

- No more composite states
- Simple states kept
- Transition between simple states kept
- Final states kept
- etc.

## Expected Models are Difficult to Predict

- Can the tester write and use partial expected models in oracle?
- Tester predicts part of the expected model only
- Test may not predict remaining part when:
  - the model is large or complex
  - test case does not consider part of the specification
  - the output model is polymorphic
  - the transformation refactors a model

## A polymorphic model may have different syntaxes but they are equivalent



## Expected Models are Difficult to Predict

- Can the tester write and use partial expected models?
- Tester predicts part of the expected model only
- Test may not predict remaining part when:
  - the model is large or complex
  - test case does not consider part of the specification
  - the output model is polymorphic
  - the transformation refactors a model

## Filtered Model Comparison

Filtered Model Comparison used in the Oracle Function.

The Oracle Data consists of only one model or one partial model.

The unpredicted part is not considered.

#### Oracle returns Partial Verdict

- No more composite states
- Simple states kept
- Transitions between simple states kept
- Final states kept
- etc.



#### Oracle returns Partial Verdict

- No more composite states
- Simple states kept
- Transitions between simple states kept
- Final states kept
- etc.

Considering Partial Oracle Data



# Predicted / Unpredicted Part of the Output Model

- The Oracle considers the predicted part
- The verdict is not concerned with the unpredicted part



# Predicted / Unpredicted Part of the Output Model

- The Oracle considers the predicted part
- The verdict is not concerned with the unpredicted part







## Oracle data is the partial expected model

The expected model can be entirely writen :



or partially writen:



## Oracle data is the partial expected model

The expected model can be entirely writen :



or partially writen:



## Oracle Function using Filtered Comparison

Process



**Output Model** 



Partial Expected Model

- Comparaison returns differences
- Filter is parameterized with a pattern
- 3. The filter rejects difference about unpredicted part

## Oracle Function using Filtered Comparison

Filtering with a pattern made of metamodel fragments



## Oracle Function using Filtered Comparison

Process



## Prototype Implementation

- EMF Framework
- Model Comparison processed with EMF Compare
- Pattern matching processed with IncQuery
- Unpredicted Part defined with Ecore MM fragments.
- Available on : https://sites.google.com/site/partialverdictmt/

## Experimentation

Two model transformations :

fsm2ffsm: in Kermeta

UML to CSP: in ATL

- 30 + 64 test models
- 20 + 56 output models are polymorphic
  - Complete comparison requires to create 835 expected models

#### versus

- Filtered comparison requires to create
  - 94 partial expected models and 8 patterns
    - Patterns are shared by several test cases of a transformation
- Gain in tester effort is between 70% and 93%
- 4 bugs detected
- Available on : https://sites.google.com/site/partialverdictmt/

## **CONCLUSION**

#### Benefits

- Allows the use of partial model as oracle data
- Partial verdict detects bugs
- Partial models are smaller and less numerous than complete models (especially polymorphic ones)
- Decreases the number of model comparison
- Helps to concentrate effort on unpredicted part
- Partial model and patterns constructed in the same way as test models

#### Limits

- Only part of the output model is controlled
- Control of the unpredicted part is postponed
- Describing the pattern is not obvious

## Perspectives

- Evaluate the frequency and the size of the unpredicted part
- Empirical studies of the efficiency of these oracles
  - Based on Mutation Analysis
- Measure the completeness of a set of partial oracles







# Partial Test Oracle in Model Transformation Testing

## ICMT'13 – Budapest

Olivier Finot, <u>Jean-Marie Mottu</u>, Gerson Sunyé, Christian Attiogbe



## Story so far! Test Model Generation

- 2012: Can we extract effective testing knowledge via static analysis of a model transformation?
- Published in: *Mottu, Sen et al.* Static Analysis of Model Transformations for Effective Test Generation, **ISSRE'12**
- From Static Metamodel Footprinting, we identify which rule uses which MM concept. Then we transform this knowledge into testing knowledge.
- We expriment more than 90% mutation score.

## **Tediousness of Creating Models**

#### Problems

- 1. Must conform to metamodel MMi
- 2. Must satisfy MMi invariants (OCL)
- 3. Must satisfy pre-conditions pre(MT) on model transformation (OCL)
- 4. Must contain test knowledge to find bugs

## Tediousness of Analysing Models

#### Problems

- 1. Must conform to metamodel MMo
- 2. Must satisfy MMo invariants (OCL)
- 3. Must satisfy post-conditions post(MT) on model transformation (OCL)
- 4. Must control if output model satisfies the specification depending on the test model