Automatic Test Model Generation for

Model Transformations Using Mutation Analysis
A Model-Driven Approach

Author:
Thomas Degueule!

INzE

Supervisors:
Jean-Marie Mottu!
Gerson Sunyé?

! AeLoS — LINA
2 AtlanMod — EMN

L1

UNIVERSITE DE NANTES %

July 4, 2013

Table of Contents

@ Introduction

@® Context

© Automation of Mutation Analysis for Model Transformation
@ Development

@ Ongoing Work

@® Conclusion

2/22

Introduction

Introduction

Model transformations are critical elements of MDE

Traditional testing techniques need to be adapted to their
specificities

Software testing is an expensive and mainly manual task

How to help model transformations testers?
e Generate test models automatically

Context
en Engineering

Model-Driven Engineering

Produce software automatically from high-level models

e Each model represents an aspect of the system
e Each model is written in a domain-specific language
e Composition of models forms the whole system

e Models are refined into concrete artifacts
e Code

e Tests

e Documentation

e Configuration files

Context

Model-Driven Engineering

Mutation Analysis

Model Transformations

MOF
conforms to_ /YMeta—metamodelY\ _conforms to
Input ~ ~ ~ Output
Metamodel Metamodel
I
Model
Transformation
Program
Input Models Output Models
e Written using a model transformation language (ATL, Kermeta, ...)
e Divided into several transformation rules

o Usage:
o Refine abstract models into concrete models
e Apply design patterns
e Refactoring. ..

Context

Engineering

Model Transformations

MOF
conforms to_ -9 Meta»metamodelY\ _conforms to
Input =~ = ~ Output
Metamodel Metamodel
1 . ; 1
conforms to s/atisfz/ s:ltl_sf)\/ jconforms to
y 2 \

Model P
@ |5
Transformation S
Program T

Input Models Output Models

e Incorrect model transformations lead to corrupted models
e They are used many times in a MDE process
e They are black-box for the end users

e => They need to be trustworthy and thoroughly tested

N
N}

Context

Model-Driven Engineering

Mutation Analysis

Model Transformations

MOF
conforms to_ - Meta—metamodelY\ _conforms to
Input ~ ~ ~ Output
Metamodel Metamodel
S A
conforms to Sftlsff
[
Model
Transformation
Program
Input Models Output Models

e Test data are models: complex and large graph of objects
e They must satisfy many constraints

Metamodel conformance

e Metamodel invariants

e Transformation preconditions

e Test intent

Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit

Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit

PUT || Mutants

a=b+c

Table: The Arithmetic Operator Replacement (AOR) operator

Context
Model-Driven Engineering

Mutation Analysis

Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit

PUT || Mutants
a=b-c
a=b*c

a=b+c —b/c
a=b%c

Table: The Arithmetic Operator Replacement (AOR) operator

Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis (2)

e Mutation analysis supposes the existence of a test set

e |s a test data able to detect the voluntary injected fault?
e Compare the outputs!

e Let P be the PUT, M one of its mutant and T its test set:

o If 3t € T : M(t) # P(t) then the mutant M is killed
o IfVt € T : M(t) = P(t) then the mutant M is alive

Mutation Score Computation

_ Killed Mutants
MSCO’E(T) =100 x Total Mutants— Equivalent Mutants

Context

Model-Driven Engineerin
Mutation Analysis

Mutation Analysis Process

Program
Under Test

1
! :
T || Mutants | S~ \

Mutation Score
Computation

! . T
Mutation l Test Set |~

S
Operators

Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Program
Under Test

1

1

1 1

T ~7||| Mutants | >~ X

Mutation
Operators

¥
—

Test Set

Preliminary Step

e Produce the set of mutants
o Based on the language-specific mutation operators of the PUT

o Initial test set provided by the tester or automatically generated

N
N

Context

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Program
Under Test

1
! :
T _-7||| Mutants | >~ X

Mutation Score ‘ [ok] ®

Computation

H . | .
Mutation l Test Set |~

S
Operators

Execution

o Compile all the mutants

o Execute all (test model, mutant) pairs
e Collect the outputs and compare them
o Determine the status of mutants (killed or alive)

Context

Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Program
Under Test
: . /'1 Mutants

Mutation
Operators

Mutation Score Computation

e A human-made test set obtains around 60-75% mutation score

’
’,
¥
—

Test Set

e |t is often difficult to reach a 95% mutation score

o Tester must define a threshold beyond which the test set is
considered sufficiently efficient

N
N

Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Program
Under Test

s
'

1 1

1 ~7||| Mutants | >~ H

Mutation
Operators

Test Set Improvement

e Fully manual task

Test Set

¥
—

o Tester needs to determine why a mutant has not been killed and
how to kill it

o Tester needs to analyze test models and create new ones

N
N

Context
Model-Driven Engineering
Mutation Analysis

Mutation Operators for Model Transformations

e Specific mutation operators need to be defined for model
transformations

° Mutation Analysis Testing for Model Transformations.
Mottu JM., Baudry B. and Le Traon Y. in Proceedings of the
European Conference on Model Driven Architecture (ECMDA 06)

CATEGORY DESCRIPTION #
Navigation Alter the operations of navigation in the models 4
Filtering Alter the operations of filtering of collection 3
Creation Alter the creation or modification of elements 3
Modification

10

Table: Mutation Operators for Model Transformations

Problematic

. . e N Using Trac
Automation of Mutation Analysis for Model Transformation [l LI

Problematic

e Building test models from scratch is complex
e Can we reuse existing models to create new ones?

e We need to identify relevant test models, and develop heuristics to
create new ones

Test Model Improvement Process

® Which models and which parts of these models are the most
relevant?
® What should the output model look like in order to kill the mutant?

©® How to modify the input model in order to produce this difference?

Problematic

Using Traceability to Collect Information
Modeling Mutation Operators

Patterns and Recommendations

Automation of Mutation Analysis for Model Transformation

Experiment : th

Using Traceability to Collect Information

m Tra

ormation

Ve ~ O
: Column
name = street Model transformation namgs address_street
sre is_primary = true N |—|"ans,mm .~ [type = String
: Class :Association N AR ’
name = Person - attrs \ NS B cols
name = address| de: \ N
is_persistent = false A - Class] l'
:Llass \ - P : Table
Tparent \ name = Address \ AN \ - ———
N [is_persistent = true N ’ 'Y
’ ’ »
N istent = t F--" ’ s
is_persistent = true -
= == >-*~ .~ “Excerpt of
< ’ _=
\Excerpt of Input Model Sample” ==~~~ _ _ _ /) . _--- Output Model Sample
=/ __ <z - ——
Excerpt of Local Trace

destEltsContainer

Traceability for Mutation

RulesContainer | rulesContainer LocalTrace 1+ | _ElementsContainer
| rulesContainer |
name : Estring L
0.1 srcEltsContainer | "2me * EString Analysis in Model
- o
Transformations. Aranega
0.+ | ruleRefs 0.+ links 0.+ | elementrefs
sretink srcElements :
RuleRef ruleRef __links/—jn - L | ModeRer | EObjec V., Mottu JM., Etien A. and
name ring 1 *i rin name ring L e
ame : EString |0 0-7|id:EString | gestiink _destelements | "ame : EString
uuid : EString

BlackBoxRef

AttributeRef

1.

ClassRef ReferenceRef

Dekeyser JL. in Chapters of
Models in Software

Engineering, 2011

N}

Automation of Mutation Analysis for Model Transformation

Problematic

Using Traceability to Collect Information
Modeling Mutation Operators

Patterns and Recommendations

Experiment : th m Transformation

Using Traceability to Collect Information

N

is_persistent = true

_ Excerpt of Input Model Sample” =~~~ _ _ __ _ _/

destEltsContainer

: Attribute : Column
name = street € Model transformation nameps address_street
src : N =
is_primary = true ~ transform ¢ ~ ~|type = String
Class :Association - N S ’,
= attrs
name = Person '\ name = address|| dest T createColumns N ’/ T cols
is_persistent = false A ~Class !
_ N ! .
name = Address - \ S p-ow iTable
Tpa'e“‘ N ; ; \ e name = Student
M. |is_persistent = true v, 4
’
Student !

L7
_ - “Excerpt of
_|- = Butput Model Sample

~ @@

Excerpt of Local Trace

Traceability for Mutation

RulesContainer rulesContainer LocalTrace 1. ElementsContait
0.1 srcEltsContainer {72 * ESUTiNg Analysis in Model
-
Transformations. Aranega
0.+ rteers 0.+ inks [e)
Roiener Rl kst 1o . WU V., Mottu JM., Etien A. and
name : Estring |01 0.(id: ESting A wouttink ectblomens | name : Esting | | .
1 5 " uuid : Estring Dekeyser JL. in Chapters of
A 1
A .
Models in Software
[BlackBoxer | Classhef | [ReferenceRer |

Engineering, 2011

>

Automation of Mutation Analysis for Model Transformation

Mutation Matrix

e Results of the mutation process are gathered in a mutation matrix

Mutants
T, T, T,
my (Coo Co1 Con
]
[
g myCo C11 Cin
=

Problematic

Using Traceability to Collect Information
Moc Mutz

Patterns ommendat

Experiment : t m Tra

Automation of Mutation Analysis for Model Transformation

Mutation Matrix

e Results of the mutation process are gathered in a mutation matrix

e Local trace models are associated to each (test model, mutant) pair

Mutants
To T,
My (Coo Co1 For each (test model, mutant), we collect:
o}
é m,; | G0 Rt ® The local trace model

® The status of the mutant

Problematic
. ¢ . s . Using aceability to Collect Information
Automation of Mutation Analysis for Model Transformation Modeling Mutation Operators

rmation

Modeling Mutation Operators

To find out why a mutant remains alive, we need to exploit its
semantic difference with the original transformation

Thus, we need a precise modeling of the mutation operators

Implementation independent / metamodel independent approach

Models describe effects upon manipulated data (models)

Problematic
Using Traceability to Collect Information

Automation of Mutation Analysis for Model Transformation Modeling Mutation Operators

rmation

Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

assoc.dest := cls
end

Figure: RSCC Operator Instanciation Example on a Transformation

Problematic
Using Traceability to Collect Information

Automation of Mutation Analysis for Model Transformation Modeling Mutation Operators

rmation

Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

//assoc.dest := cls

assoc.src := cls
end

Figure: RSCC Operator Instanciation Example on a Transformation

. . - N U
Automation of Mutation Analysis for Model Transformation AL
Modeling Mu:

ility to Collect Information
tation Operators

Patterns a nmer

Expe e he fs s ansformation

Modeling Mutation Operators: RSCC Example (2)

Attribute
| | name : String 1
is_primary : Boolean

* |y assodation g I*
— r parent —
[Assodiation | Qass 7 [PrimitiveDataType |
|narre:5trir\g 1 Iis_pers’stert:Boolean - [

newNavigation

Figure: RSCC Operator Instanciation Example on a Class Diagram Metamodel

natic
Using Traceability to Collect Information
utation Operators
1 R

Automation of Mutation Analysis for Model Transformation i
Modeling M

mation

Modeling Mutation Operators:

Attribute

| I | name : String 1
is_primary : Boolean
- attrs «
« |y assodiation g I
— r parent —
[Assodiation | Qass 7 [PrimitiveDataType |
|narre:5trir\g 15 [is_persistent : Boolean |— [
dest!

oSinarTuna

I
o
I

A

Figure: RSCC Operator Metamodel

. ¢ . o . g C Infc atiol
Automation of Mutation Analysis for Model Transformation RIOUAZON

ommendations
Experiment : the fsm2ffsm Transformation

Patterns and Recommendations

e Thanks to the collected informations (trace, mutation models):

e We can identify specific configurations in the input models that leave
the mutant alive

e We associate recommendations to these patterns that should kill the
mutant

¢ : ClassModel association] 41 : Association

name = 'foo'

src de“l
[s Class |

name = 'bar'
is_persistent = true

16 /22

Automation of Mutation Analysis for Model Transformation) ing Mut
Patterns
Experime

Patterns and Recommendations

e Thanks to the collected informations (trace, mutation models):
e We can identify specific configurations in the input models that leave

the mutant alive
e We associate recommendations to these patterns that should kill the

mutant
c : ClassModel association| a1 ; Association ¢ : ClassModel assoclation] 41 : Association
name = 'foo' name = 'foo’
———————————— > sre dest
sre des‘l new test model
e - L —
clsl : Class cls2 : Class [—dst v Class
name = 'bar' name = 'baz' name = 'bar'
is_persistent = true is_persistent = false is_persistent = true

16 /22

i i is f i Infc atiol
Automation of Mutation Analysis for Model Transformation RIOUAZON

Experiment : the fsm2ffsm Transformation

Experiment : the fsm2ffsm Transformation

e Finite state machine flattening

e Initial test set (9 models) generated with input metamodel coverage
techniques

e 148 mutation models — 126 mutants

Results & Analysis

e Mutation score from 45% to 100% in 8 iterations
e Gain in terms of elements to be covered: 87%
e 5 mutants killed by automatic application of recommendations

e For 2 mutants, trace models indicated that the mutated rule were
not executed

Only 1 mutant required deeper analysis

Development

Development

Generic experimentation platform for mutation analysis of model
transformations

Traceability mechanism for Kermeta

e Generation of mutation models based on transformation’s
metamodels

Ongoing: Mutant killing constraints to Alloy transformation

Ongoing Work

Ongoing Work (1)

o Constraint-based generation of test models

Metamodel
Conformance

Metamodel .
Invariants
Alloy SAT
Specification Solver 3 L]
Transformation
Preconditions
Test Model

Test Intent
Test Objective

Figure: Constraint-Based Generation of Test Models using ALLOY

19/22

Ongoing Work

Ongoing Work (2)

e Collaboration with Olivier Finot, PhD student

e Reusing of the experimentation platform in order to study and
compare testing oracles

e Qualifying Oracles in Model Transformation Testing, in process of
writing for the 2nd Workshop on the Analysis of Model
Transformations, MODELS2013

Conclusion

Conclusion

e Ease the tester's work:

e Trace mechanism drastically reduces the elements to be covered
e Test models are semi-automatically generated

e MDE approach:
e Modeling of the mutation operators
o Results of the process are gathered in a mutation matrix model
e Drawbacks:
e Trace mechanism must be adapted to each transformation language
e An initial test set is required for improvement
e Towards a constraint-based generation of test models

N
N
>

Conclusion

The work so far

01/02 01/03 01/04 01/05 01/06 01/07 01/08
| Bibliography -

'STVR13 : Writing the Annex

Y

Operators Metamodels

Y

Patterns
I

Experiment

 Tools >

>

Y

 Constraint-Based Generation

AMT13

Towards an Automation of the Mutation Analysis Dedicated to Model
Transformation. Aranega V., Mottu JM., Etien A., Degueule T., Baudry
B. and Dekeyser JL. submitted to Software Testing, Verification and
Reliability, 2013

N
N
N
N

	Introduction
	Context
	Model-Driven Engineering
	Mutation Analysis

	Automation of Mutation Analysis for Model Transformation
	Problematic
	Using Traceability to Collect Information
	Modeling Mutation Operators
	Patterns and Recommendations
	Experiment : the fsm2ffsm Transformation

	Development
	Ongoing Work
	Conclusion

