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Introduction

Introduction

Model transformations are critical elements of MDE

Traditional testing techniques need to be adapted to their
specificities

Software testing is an expensive and mainly manual task

How to help model transformations testers?
e Generate test models automatically
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en Engineering

Model-Driven Engineering

Produce software automatically from high-level models

e Each model represents an aspect of the system
e Each model is written in a domain-specific language
e Composition of models forms the whole system

e Models are refined into concrete artifacts
e Code

e Tests

e Documentation

e Configuration files
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Mutation Analysis

Model Transformations
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Transformation
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Input Models Output Models
e Written using a model transformation language (ATL, Kermeta, ...)
e Divided into several transformation rules

o Usage:
o Refine abstract models into concrete models
e Apply design patterns
e Refactoring. ..
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e Incorrect model transformations lead to corrupted models
e They are used many times in a MDE process
e They are black-box for the end users

e => They need to be trustworthy and thoroughly tested

N
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e Test data are models: complex and large graph of objects
e They must satisfy many constraints

Metamodel conformance

e Metamodel invariants

e Transformation preconditions

e Test intent
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Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit
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Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit

PUT || Mutants

a=b+c

Table: The Arithmetic Operator Replacement (AOR) operator
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Mutation Analysis

Mutation Analysis (1)

Mutation analysis is a fault-based testing technique used to qualify the
test set of a program under test (PUT).

e Faulty versions of the PUT (mutants) are created by systematically
injecting one single fault per version

e These faults are injected using mutation operators

e They represent real faults a developer may commit

PUT || Mutants
a=b-c
a=b*c

a=b+c —b/c
a=b%c

Table: The Arithmetic Operator Replacement (AOR) operator
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Mutation Analysis (2)

e Mutation analysis supposes the existence of a test set

e |s a test data able to detect the voluntary injected fault?
e Compare the outputs!

e Let P be the PUT, M one of its mutant and T its test set:

o If 3t € T : M(t) # P(t) then the mutant M is killed
o IfVt € T : M(t) = P(t) then the mutant M is alive

Mutation Score Computation

_ Killed Mutants
MSCO’E(T) =100 x Total Mutants— Equivalent Mutants




Context

Model-Driven Engineerin
Mutation Analysis

Mutation Analysis Process

Program
Under Test

1
! :
T || Mutants | S~ \

Mutation Score
Computation

! . T
Mutation l Test Set |~

S
Operators




Context
Model-Driven Engineering
Mutation Analysis

Mutation Analysis Process

Program
Under Test
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Test Set

Preliminary Step

e Produce the set of mutants
o Based on the language-specific mutation operators of the PUT

o Initial test set provided by the tester or automatically generated

N
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Execution

o Compile all the mutants

o Execute all (test model, mutant) pairs
e Collect the outputs and compare them
o Determine the status of mutants (killed or alive)
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Mutation Analysis Process

Program
Under Test
: . /'1 Mutants

Mutation
Operators

Mutation Score Computation

e A human-made test set obtains around 60-75% mutation score

’
’,
¥
—

Test Set

e |t is often difficult to reach a 95% mutation score

o Tester must define a threshold beyond which the test set is
considered sufficiently efficient

N
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Mutation Analysis Process

Program
Under Test
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Test Set Improvement

e Fully manual task

Test Set

¥
—

o Tester needs to determine why a mutant has not been killed and
how to kill it

o Tester needs to analyze test models and create new ones

N
N
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Mutation Operators for Model Transformations

e Specific mutation operators need to be defined for model
transformations

° Mutation Analysis Testing for Model Transformations.
Mottu JM., Baudry B. and Le Traon Y. in Proceedings of the
European Conference on Model Driven Architecture (ECMDA 06)

CATEGORY DESCRIPTION #
Navigation Alter the operations of navigation in the models 4
Filtering Alter the operations of filtering of collection 3
Creation Alter the creation or modification of elements 3
Modification

10

Table: Mutation Operators for Model Transformations
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Problematic

e Building test models from scratch is complex
e Can we reuse existing models to create new ones?

e We need to identify relevant test models, and develop heuristics to
create new ones

Test Model Improvement Process

® Which models and which parts of these models are the most
relevant?
® What should the output model look like in order to kill the mutant?

©® How to modify the input model in order to produce this difference?
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Using Traceability to Collect Information
Modeling Mutation Operators

Patterns and Recommendations

Automation of Mutation Analysis for Model Transformation

Experiment : th

Using Traceability to Collect Information
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Using Traceability to Collect Information
Modeling Mutation Operators

Patterns and Recommendations

Experiment : th m Transformation

Using Traceability to Collect Information
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Mutation Matrix

e Results of the mutation process are gathered in a mutation matrix

Mutants
T, T, T,
my (Coo Co1 Con
]
[
g myCo C11 Cin
=
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Automation of Mutation Analysis for Model Transformation

Mutation Matrix

e Results of the mutation process are gathered in a mutation matrix

e Local trace models are associated to each (test model, mutant) pair

Mutants
To T,
My ( Coo Co1 For each (test model, mutant), we collect:
o}
é m,; | G0 Rt ® The local trace model

® The status of the mutant
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Modeling Mutation Operators

To find out why a mutant remains alive, we need to exploit its
semantic difference with the original transformation

Thus, we need a precise modeling of the mutation operators

Implementation independent / metamodel independent approach

Models describe effects upon manipulated data (models)
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Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

assoc.dest := cls
end

Figure: RSCC Operator Instanciation Example on a Transformation
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Modeling Mutation Operators: RSCC Example (1)

“The RSCC operator replaces the navigation of one reference towards a
class with the navigation of another reference to the same class.”

Mutation Analysis Testing for Model Transformations, Mottu et al.

operation my_rule(assoc : Association, cls : Class) is
do

//assoc.dest := cls

assoc.src := cls
end

Figure: RSCC Operator Instanciation Example on a Transformation
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Modeling Mutation Operators: RSCC Example (2)

Attribute
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|narre:5trir\g 1 Iis_pers’stert:Boolean - [

newNavigation

Figure: RSCC Operator Instanciation Example on a Class Diagram Metamodel
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Modeling Mutation Operators:

Attribute

| I | name : String 1
is_primary : Boolean
- attrs «
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[ Assodiation | Qass 7 [ PrimitiveDataType |
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Figure: RSCC Operator Metamodel
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Patterns and Recommendations

e Thanks to the collected informations (trace, mutation models):

e We can identify specific configurations in the input models that leave
the mutant alive

e We associate recommendations to these patterns that should kill the
mutant

¢ : ClassModel association] 41 : Association

name = 'foo'

src de“l
[ s Class |

name = 'bar'
is_persistent = true
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Patterns and Recommendations

e Thanks to the collected informations (trace, mutation models):
e We can identify specific configurations in the input models that leave

the mutant alive
e We associate recommendations to these patterns that should kill the

mutant
c : ClassModel association| a1 ; Association ¢ : ClassModel assoclation] 41 : Association
name = 'foo' name = 'foo’
———————————— > sre dest
sre des‘l new test model
e - L —
clsl : Class cls2 : Class [—dst v Class
name = 'bar' name = 'baz' name = 'bar'
is_persistent = true is_persistent = false is_persistent = true
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Experiment : the fsm2ffsm Transformation

Experiment : the fsm2ffsm Transformation

e Finite state machine flattening

e Initial test set (9 models) generated with input metamodel coverage
techniques

e 148 mutation models — 126 mutants

Results & Analysis

e Mutation score from 45% to 100% in 8 iterations
e Gain in terms of elements to be covered: 87%
e 5 mutants killed by automatic application of recommendations

e For 2 mutants, trace models indicated that the mutated rule were
not executed

Only 1 mutant required deeper analysis
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Development

Generic experimentation platform for mutation analysis of model
transformations

Traceability mechanism for Kermeta

e Generation of mutation models based on transformation’s
metamodels

Ongoing: Mutant killing constraints to Alloy transformation
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Ongoing Work (1)

o Constraint-based generation of test models

Metamodel
Conformance

Metamodel .
Invariants
Alloy SAT
Specification Solver 3 L ]
Transformation
Preconditions
Test Model

Test Intent
Test Objective

Figure: Constraint-Based Generation of Test Models using ALLOY
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Ongoing Work (2)

e Collaboration with Olivier Finot, PhD student

e Reusing of the experimentation platform in order to study and
compare testing oracles

e Qualifying Oracles in Model Transformation Testing, in process of
writing for the 2nd Workshop on the Analysis of Model
Transformations, MODELS2013
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Conclusion

e Ease the tester's work:

e Trace mechanism drastically reduces the elements to be covered
e Test models are semi-automatically generated

e MDE approach:
e Modeling of the mutation operators
o Results of the process are gathered in a mutation matrix model
e Drawbacks:
e Trace mechanism must be adapted to each transformation language
e An initial test set is required for improvement
e Towards a constraint-based generation of test models

N
N
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The work so far
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