Decidability Results for the Coverability in Petri Nets with Discrete Parameters

partially presented in Petri Nets 2015

Bruxelles

Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux

University of Nantes/LINA, École Centrale de Nantes/IRCCyN

October 15, 2015

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

Why Introducing Parameters?

- modeling arbitrary large amount of processes
- modeling unspecified aspect of the environment
- provide a higher level of abstraction

State of the Art

Literature is a bit fragmented: parametric, parameterised or parameterized Petri nets are introduced by diverse authors...

- Parameters are often used to handle dynamic changes in a system (SMPN, ACPN, Strat.PN)
- $f \omega$ -PN for parametric concurrent systems with dynamic threads creation
- Parameterized Petri nets: parameterization of the structure itself
- Petri Nets where the initial marking of the PN can be parameterised

Classic Model? a marked Petri Net (PPN)

Classic Model? a marked Petri Net (PPN)

Classic Model? a marked Petri Net (PPN)

Some Concrete Intuitions (Markings)

Some Concrete Intuitions (Arcs)

Instantiation

Instantiation

Instantiation

Some Definitions

Definition

Parametric Transitions of SP, $T_{par} \subseteq T = set$ of transitions with "at least one parameter on an input or output"

Definition (Parametric Support)

Given a sequence w, $\Theta(w)$, is the set of parametric transitions involved in w.

$$\Theta(w) = \{t \in T_{par} \text{ s.t. } |w|_t \ge 1\}$$

Reminders...

Let $S = (N, m_0) = (P, T, Pre, Post, m_0)$ and m a marking of S

Definition (Reachability)

S reaches m ($m \in RS(S)$) if there exists a firable sequence of transitions from m_0 to m.

$$\exists w \in T^* \text{ s.t. } m_0 \stackrel{w}{\to} m \tag{1}$$

Definition (Coverability)

 ${\cal S}$ covers m if there exists a reachable marking m' of ${\cal S}$ such that m' is greater or equal to m i.e.

$$\exists m' \in \mathcal{RS}(\mathcal{S})$$
s.t. $\forall p \in P, m'(p) \ge m(p)$ (2)

Some Examples

$$RS = \{(2,1,0), (1,0,1)\}$$

$$CS = \{m | m \le (2,1,0) \lor m \le (1,0,1)\}$$

Parametric Properties

Given a class of problem $\mathcal P$ (coverability, reachability,...), $\mathcal {SP}$ a PPN and ϕ is an instance of $\mathcal P$

Definition (\mathcal{P} -Existence problem)

 $(\mathscr{E}-\mathcal{P})$: Is there a valuation $\nu \in \mathbb{N}^{\mathsf{Par}}$ s.t. $\nu(\mathcal{SP})$ satisfies ϕ ?

Definition (\mathcal{P} -Universality problem)

 $(\mathscr{U}-\mathcal{P})$: Does $\nu(\mathcal{SP})$ satisfies ϕ for each $\nu \in \mathbb{N}^{\mathsf{Par}}$?

Definition (\mathcal{P} -Synthesis problem)

 $(\mathcal{S}-\mathcal{P})$: Give all the valuation ν , s.t. $\nu(\mathcal{SP})$ satisfies ϕ .

Existence

Existence

Existence

Universality

Universality

Universality

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

Results

Theorem (Undecidability of &-cov on PPN)

The \mathscr{E} -coverability problem for PPN is undecidable.

Theorem (Undecidability of \mathscr{U} -cov on PPN)

The \mathscr{U} -coverability problem for PPN is undecidable.

2-Counters Machine

- two counters c_1, c_2 ,
- states $P = \{p_0, ...p_m\}$, a terminal state labelled *halt*
- finite list of instructions $l_1, ..., l_s$ among the following list:
 - increment a counter
 - decrement a counter
 - check if a counter equals zero

Counters are assumed non negative.

Example of 2-Counters Machine

$$p_1. \ C_0 := C_0 + 1; goto \ p_2;$$

 $p_2. \ C_1 := C_1 + 1; goto \ p_1;$

instructions sequence:

$$(p_1, C_0 = 0, C_1 = 0)$$

 $\rightarrow (p_2, C_0 = 1, C_1 = 0)$
 $\rightarrow (p_1, C_0 = 1, C_1 = 1)$
 $\rightarrow (p_2, C_0 = 2, C_1 = 1)$
 $\rightarrow ...$

Simulation of a 2-Counters Machine

- E-cov can be reduced to halting problem (whether state halt is reachable)
- \(\mathcal{U}\)-cov can be reduced to counters boundedness problem (whether the counters values stay in a finite set)
- halting problem and counters boundedness problem are undecidable

Simulation of Instructions: $m(C1) + m(\neg C1) = \lambda$

- \mathcal{M} halts iff there exists a valuation ν such that $\nu(\mathcal{SP}_{\mathcal{M}})$ covers the corresponding p_{halt} place.
- the counters are unbounded along the instructions sequence of \mathcal{M} iff for each valuation ν , $\nu(\mathcal{SP}_{\mathcal{M}})$ covers the *error state*.

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

Hierarchy of Parametric Petri Nets

From Markings to Output Weights

replacement of
the **P parameters**by **postT parameters**~~~~~~

From Markings to Output Weights

replacement of
the **P parameters**by **postT parameters**~~~~~~

Expand the $\overline{\text{Hierarchy}}$ (1)

Expand the Hierarchy (2)

From Parametric Markings to Classic Petri Nets

Monotony in preT-PPN

Let SP = (P, T, Pre, Post, Par) be a preT-PPN.

Lemma

Let $w \in T^*$ be a transitions sequence such that $m_0 \stackrel{w}{\to}_{\nu} m$. For any valuation $\nu' \leq \nu$, $m_0 \stackrel{w}{\to}_{\nu'} m'$ s.t. $m' \geq m$

We obtain that for any $\nu_i < \nu_j$,

$$CS(\nu_j(SP)) \subseteq CS(\nu_i(SP)) \tag{3}$$

Thus:

- Set of markings coverable in at least one instance = $\mathcal{CS}(\mathbf{0}(\mathcal{SP}))$
- Set of markings coverable in any instance = $CS(\omega(SP))$.

Monotony in postT-PPN

Let SP = (P, T, Pre, Post, Par) be a postT-PPN.

Lemma

Let $w \in T^*$ be a transitions sequence such that $m_0 \stackrel{w}{\to}_{\nu} m$. For any valuation ν' such that $\nu \leq \nu'$, $m_0 \stackrel{w}{\to}_{\nu'} m'$ s.t. $m' \geq m$

Thus:

- Set of markings coverable in at least one instance = $\mathcal{CS}(\omega(\mathcal{SP}))$
- Set of markings coverable in any instance $= \mathcal{CS}(\mathbf{0}(\mathcal{SP})).$

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

Decidability of the \mathscr{E} -Coverability

Decidability of the *W*-Coverability

Ideas of the Proofs

- Monotony in postT-PPN gives $\mathscr{U} cov$
- Monotony in preT-PPN gives $\mathscr{E} cov$
- Translation from P-PPN in PN gives $\mathscr{E} cov$
- Weak bisimilarity between postT-PPN and P-PPN complete the study of postT & P-PPN
- Adaptation of Karp and Miller Algorithm provides $\mathscr{U}-cov$ in preT-PPN
- In distinctT-PPN : partition of parameters Par_{Pre} and Par_{Post} with previous results

Detail of $\mathscr{U} - cov$ in preT-PPN

Marking universally coverable \Rightarrow two main cases:

- cover this marking without using any parametric transition
- 2 otherwise, there exists a run which uses parametric transition that could be fired in any instance of the preT-PPN
- (2) \Rightarrow the firing condition of a parametric arcs involved can be covered for any valuation \Rightarrow acceleration of markings reached creates ω 's in the input places of the parametric arcs involved.

Precise the Study of Coverbality

	$\mathscr{U} ext{-}Coverability$	$\mathscr{E} ext{-}Coverability$
Subclasse	Complexity	Complexity
preT-PPN	EXPSPACE-h	EXPSPACE-c
postT-PPN	EXPSPACE-c	EXPSPACE-c
PPN	Undecidable	Undecidable
distinctT-PPN	EXPSPACE-h	EXPSPACE-c
P-PPN	EXPSPACE-c	EXPSPACE-c

Table 1: Decidability results for parametric coverability and reachability

Toward Synthesis

- A backward algorithm using upward closed sets.
- Algorithm : Symbolic Exploration of the state space by constraints and projection on the parameters with Parma Polyhedra Lib. (C++)

- 1 Introducing Parameters
- 2 Undecidability of the General Case
- 3 Introduction of Subclasses
- 4 Decidability Results
- 5 Conclusion

Contributions

- Parameterised models with higher level of abstraction
- Parameters on input arcs, output arcs and markings
- Study of decidability of parameterised versions of well-known properties

Future Work

- Prove that the Universal coverability is decidable on Petri Nets with parameters on input arcs Done
- Extend this study to reachability (*&-reachability is decidable for Nets with parameters on markings*)
- Study of the Synthesis Problem (using symbolic constraints)

Thank you for your attention

any remarks? any questions?